In the [General] section, all entries are in the form Item=Value, with no spaces on either side of the equals sign. Throughout the rdf, any numeric value can me prefixed with a dollar sign ($) to have the number be interpreted as hexadecimal. The defined items are:

Name
Display name of the remote

EepromSize
Memory size

DevCodeOffset
Size of offset added to the device code (for RCU810)

FavKey
Fav/Scan specifier (see below)

OEMDevice
OEM specifier (see below)

UpgradeBug
Set to non-zero for remotes that must use the device-specific upgrade area for all upgrades

AdvCodeAddr
Address range of the advanced code section

KeyMoveSupport
Set to N, No, F, False, or 0 for remotes that do not support key moves

MacroSupport
Set to N, No, F, False, or 0 for remotes that do not support macros

UpgradeAddr
Address range of the upgrade section. (This is considered the address of the pointer to the device upgrade list, which is generally $100 for S3C80-based remotes and $104 for 740-based remotes

DevUpgradeAddr
Address range of the device-specific upgrade section. (This excludes checksum bytes, if defined)

TimedMacroAddr
Address range of the timed macro section. (This excludes checksum bytes, if defined)

TimedMacroWarning
Set to non-zero for remotes that cannot delete individual timed macro entries, and thus must delete all entries following one that is deleted

LearnedAddr
Address range of learned codes section

Processor
Processor family. Either S3C80 or 740

RamAddr
Address of protocol (used by disassembler)

TimeAddr
Address where IR will store the current (system) time when uploading to the remote. (Must be supported by reset code in the remote.)

RDFSync
Used to keep RDFs in sync with the EXE

MaxProtocolLength
Maximum allowable length for an individual protocol’s code.

OmitDigitMapByte
Set to Y, Yes, T, True, or 1 for remotes that do not contain digit map bytes within their upgrade devices.

AdvCodeFormat
Specifies the format of the AdvCode section (see below)

AdvCodeBindFormat
Related to AdvCodeFormat (see below)

EFCDigits
Related to AdvCodeFormat (see below)

SectionTerminator
Byte value used to mark the end of each memory section. Defaults to $00, but some remotes use $FF

Shift
Shift specifier (see below)

XShift
XShift specifier (see below)

DefaultRestriction
The button restriction that should be applied to any key for which a restriction is not explicitly defined (see below)

Identification
A string displayed by IR (when multiple RDFs match a given signature) that should help the user identify the remote supported by that RDF. This entry is terminated by a CR, so the entire entry must be placed on a single line

WavUpgrade
Set to Y, Yes, T, True, or 1 for remotes that support direct uploading of WAV files through a built-in modem.

LearnedDevBtnSwapped
Set to Y, Yes, T, True, or 1 for remotes that store the DevBtn index in the second nibble of the second byte (rather than in the first nibble) of each learned command entry.

The Fav/Scan specifier is in the form:

FavKey=KeyCode, DevBtnAddr, MaxEntries, EntrySize[, Segregated]

where KeyCode is the key assigned to the Fav/Scan function, DevBtnAddr is the address of the byte that specifies the device to use, and MaxEntries is the maximum number of allowable entries. The optional argument “Segregated” specifies whether the Fav entry is stored within the Key Move section or segregated off by itself. Segregated should be any non-zero value if the entry belongs in its own “section.” The 15-1994's entry looks like this: FavKey=$14, $01A, 15

The OEMDevice specifier is in the form:

OEMDevice=DeviceNo, DeviceAddr

where DeviceNo is the index of the OEM device type, and DeviceAddr is the address of the OEM bitmap. (Bit 0 of the OEM bitmap corresponds to the first device button, bit 1 corresponds to the second device button, etc.) The Replay RDF has the following entry: OEMDevice=4, $015

Address ranges are specified in the form: StartAddr..EndAddr.

The AdvCodeFormat value can be either HEX (the default) or EFC. Some remotes (such as the URC-6131) store data in the AdvCode section using a different format than straight hex commands. In these remotes, if an AdvCode entry is one byte, then that byte represents a KeyCode. In that case the remote will send the signal associated with the given KeyCode for the given device. If the entry is two bytes, then the bytes represent a 16-bit EFC rather than two 8-bit hex commands. For remotes using this format, specify the following: AdvCodeFormat=EFC

The EFCDigits value can be either 3 (the default) or 5. Some remotes use 3-digit EFCs and some use 5-digit EFCs. (This is independent of the AdvCodeFormat parameter described above.) Remotes supporting 5-digit EFCs should specify the following: EFCDigits5.

The AdvCodeBindFormat value can be either NORMAL (the default) or LONG. In some remotes, AdvCode entries are encoded such that both the device button and the length of the entry are stored in a single byte. In other remotes, the length of the entry is stored in a byte all by itself. (This causes the overall length of the entry in these remotes to be 1 byte larger than in the other remotes.) For remotes that use the extra byte, specify the following: AdvCodeBindFormat=LONG

The Shift specifier is in the form:

Shift=ShiftMask[,ShiftLabel]

where ShiftMask (a single byte) specifies which bit(s) is used to indicate that a key is in a shifted state, and ShiftLabel determines the text that IR will use to identify the shifted state. (A shifted state is normally achieved by pressing the Magic button before pressing the button in question.) The ShiftMask may not be 0. If there is no Shift entry in the RDF, the following will be the default: Shift=$80, Shift

The XShift specifier is in the form:

XShift=XShiftMask[,XShiftLabel]

where XShiftMask (a single byte) specifies which bit(s) is used to indicate that a key is in an xshifted state, and XShiftLabel determines the text that IR will use to identify the xshifted state. (An xshifted state can be achieved by pressing the button in question after pressing a special Shift key or entering a special shift mode.) XShift functionality is disabled if the XShiftMask is 0. If there is no XShift entry in the RDF, the following will be the default: XShift=$00, XShift

The DefaultRestriction is specified as follows:

DefaultRestriction= ButtonRestriction[{+,-}ButtonRestriction...]

where ButtonRestriction can be any one of the following constants:

MoveBind
Key moves can’t be bound to this button in its unshifted state

ShiftMoveBind
Key moves can’t be bound to this button in its shifted state

XShiftMoveBind
Key moves can’t be bound to this button in its xshifted state

MacroBind
Macros can’t be bound to this button in its unshifted state

ShiftMacroBind
Macros can’t be bound to this button in its shifted state

XShiftMacroBind
Macros can’t be bound to this button in its xshifted state

LearnBind
Learned commands can’t be bound to this button in its unshifted state

ShiftLearnBind
Learned commands can’t be bound to this button in its shifted state

XShiftLearnBind
Learned commands can’t be bound to this button in its xshifted state

MoveData
Key moves can’t contain this button in its unshifted state

ShiftMoveData
Key moves can’t contain this button in its shifted state

XShiftMoveData
Key moves can’t contain this button in its xshifted state

MacroData
Macros can’t contain this button in its unshifted state

ShiftMacroData
Macros can’t contain this button in its shifted state

XShiftMacroData
Macros can’t contain this button in its xshifted state

TMacroData
Timed macros can’t contain this button in its unshifted state

ShiftTMacroData
Timed macros can’t contain this button in its shifted state

XShiftTMacroData
Timed macros can’t contain this button in its xshifted state

FavData
Fav lists can’t contain this button in its unshifted state

ShiftFavData
Fav lists can’t contain this button in its shifted state

XShiftFavData
Fav lists can’t contain this button in its xshifted state

AllMoveBind
Key moves can’t be bound to this button regardless of shift state

AllMacroBind
Macros can’t be bound to this button regardless of shift state

AllLearnBind
Learned commands can’t be bound to this button regardless of shift state

AllMoveData
Key moves can’t contain this button regardless of shift state

AllMacroData
Macros can’t contain this button regardless of shift state

AllTMacroData
Timed macros can’t contain this button regardless of shift state

AllFavData
Fav lists can’t contain this button regardless of shift state

Bind
Nothing can be bound to the button in its unshifted state

ShiftBind
Nothing can be bound to the button in its shifted state

XShiftBind
Nothing can be bound to the button in its xshifted state

Data
The button can’t be contained in anything in its unshifted state

ShiftData
The button can’t be contained in anything in its shifted state

XShiftData
The button can’t be contained in anything in its xshifted state

Shift
Nothing can be bound to the button, nor can it be contained in anything in its shifted state

XShift
Nothing can be bound to the button, nor can it be contained in anything in its xshifted state

AllBind
Nothing can be bound to the button regardless of shift state

AllData
Nothing can contain this button regardless of shift state

All
The button cannot be used anywhere, in any shift state

A button restriction defined as: MoveBind+XShiftMoveBind will prevent a key move from being assigned to a button in its unshifted or xshifted states, but it will allow all other uses of the button (including being able to assign a key move to it in its shifted state). A restriction of: All-MoveBind will allow the button to be used only to bind key moves to. (In this case, the minus operator negates the specified restriction.)

The [Checksums] section contains a number of lines formatted as follows:

{+/^}CkAddr:BeginAddr..EndAddr

where "(+/^)" refers to either the "+" character (in which case the checksum is generated by adding numbers) or the "^" character (in which case the checksum is generated by XORing numbers), CkAddr is the address where the computed checksum is stored, CkAddr+1 is where its complement is stored, BeginAddr is beginning of the range, and EndAddr is the end of the range. For example, the entry:

+$000:$002..$03A

means that a checksum computed by adding the values from memory locations $002 to $03A is stored at $000, and its complement is stored at $001. Spaces are not allowed in checksum specifications.

The [Settings] section contains information about remote-specific settings defined in the area < $100. The entries are in the form:

Title=ByteAddr.BitNo.NumBits.InitValue.Inverted [(OptionList) | SectionName]

where Title is the name of the setting that IR will display, ByteAddr is the address of the byte that contains the information, BitNo is the starting bit position of the data within the byte (0-based), NumBits is the number of bits that make up the entry, InitValue is the value to assign to the bits when the memory is cleared, and Inverted determines whether the value must be complemented. (A non-zero value means that it’s inverted.) The remainder of the line is optional. If specified, then it will be used to populate a combo list that IR will use for user input. The OptionList, if specified, is enclosed in parentheses and contains a semicolon-separated list of values. The SectionName can be the name of any RDF section, such as DeviceButtons. The VPT device for the 1994 is defined as: VPT Device=$018.7.8.0 DeviceButtons, and the VPT status is defined as VPT Status=$019.3.1.1 (On;Off)

Note that the VPT status could also be defined as VPT Status=$019.3.1.0 (Off;On). The only functional difference between the two involves the memory clear operation. When the buffer is cleared, the first value in the list will be the one used to set the byte. Also, all the bytes are normally set to $FF when the buffer is cleared, but bytes that contain non-inverted status information will be initialized to $00.

The [FixedData] section contains information about data believed to be invariant. This section is formatted as follows:

[Addr=]Value...

where Addr is the address of the data and Value is the data that is stored there. Addr is optional. It will initially default to 0 if not specified, but will increase by 1 for each byte specified until a new address is specified. In this section and all others described below, spacing is irrelevant (except that a blank line indicates the end of the section). This means that multiple addresses can be placed on a line, or you can place one on each line. Commas and semicolons are considered whitespace, so there's no difference between:

$005=50,51,52,53

and

$005 = 50 51; $007 =52

$35

How you format these is a matter of personal preference.
The [AutoSet] section specifies values that should always be set at particular addresses. It is identical in format to the [FixedData] section, but the way it’s handled is different because IR does not care what values were there in the first place. IR simply sets the specified addresses to the specified values whenever an image is (down)loaded.

Each entry in the [DeviceButtons] section is formatted as follows:

ButtonName=HiAddr, LoAddr[, TypeAddr]

HiAddr and LoAddr contain the addresses to place the hi-order and lo-order device info (respectively) for each button. The TypeAddr is optional and should be specified only if the remote needs to store additional device type information for each button. The ButtonName cannot contain any of the following characters:

(
)
,
;
=

These characters are not permitted in any of the string tokens in any of the rdf sections.

The [DigitMaps] section is unchanged. It simply contains a list of pointers to an internal digit map table.

The [DeviceTypes] section contains entries in the form:

DevType[=Map[, Type]]

where DevType is the name of the device type, Map is the number of the button map that is associated with this type of device, and Type is a number corresponding to the DevType. If a TypeAddr is specified in the [DeviceButtons] section, then Type is a 16-bit number where the hi-order byte contains the value to be placed at that address when a device of that type is chosen. If TypeAddr is not specified, then only the lo-order byte is used. If Map is omitted then it will default to -1, effectively disabling mapping for that device type. If Type is omitted, it will initially default to 0 and increase by $0101 for each subsequent entry. (Remember, the hi-order byte will be ignored if TypeAddr is omitted.)

The [Buttons] section contains a list of button names. It contains entries in the form:

 [GenericName:]ButtonName[=KeyCode[:ButtonRestriction[{+,-}ButtonRestriction...]]]

Button names may be entered in any order, with the order determining where it will show up on the list. If a button name contains a space, it should be enclosed in either single- or double-quotes. Shifted button codes (>$80) can also be specified in order to allow customized names to be given to shifted keys.

The GenericName is currently used by RM to allow for easier conversion between remotes, but it is not yet used by IR.

If no KeyCode is specified then the KeyCode will be one higher than that of the previously defined button, and the button restriction will be the same as that of the previously defined button. (For the first entry, the KeyCode will default to 1 and the button restriction will default to DefaultRestriction.) If a KeyCode is defined but the button restriction is omitted, then the restriction will be the DefaultRestriction. (If no DefaultRestriction is specified then the button will be unrestricted.)

A button restriction applies to the button as it is defined. (See DefaultRestriction in the [General] section for a list of the button restriction constants.) For example, consider a button defined as: Bar=$83. Even though this button’s KeyCode has its shift bit set, you would restrict it from having a key move assigned to it by adding the restriction MoveBind (not ShiftMoveBind).

Note that the Shift and XShift versions of the button restriction constants restrict the ability of the user to associate shifted states with the button in question. Depending on the button’s definition, however, a shifted restriction may be superfluous. Given the example in the above paragraph, the ShiftMoveBind is assumed because the button already has its shift bit set. As such, shifting the button would have no effect. (ShiftBind+ShiftData is assumed for buttons whose shift bits are already set in their KeyCodes.)

It is legal to define 2 buttons with different KeyCodes that can resolve to the same KeyCode. For example, the following is legal: Foo=$03, Bar=$83 even though SHIFT-Foo has the same KeyCode as Bar. It is also legal to have 2 buttons with the exact same KeyCode, but in that case they should be restricted so they will not show up on the same list. For example: Foo=$03:AllMoveBind, Bar=$03:All-MoveBind would be legal, but: Foo=$03:MoveBind, Bar=$03:All-MoveBind would be illegal because both Foo and Bar would still be listed in the KeyMove binding ComboBox. (In this case, if IR saw a KeyMove bound to KeyCode $03, it wouldn’t know which name to attach to it.)

Just as it’s legal to have two different button names with the same KeyCode (as long as they’re properly restricted), it’s also legal to have the same button name associated with two different KeyCodes. Again, this requires that the buttons be restricted such that they never appear on the same list, but there are several remotes out there (mostly P8-style) that use different KeyCodes for the same button based on its use. In other words, the following is legal: Foo=$83:All-MacroData, Foo=$C3:All-MacroBind. In this case, Foo would show up in the macro binding ComboBox and in the macro key list, but selecting Foo from the ComboBox would bind a macro to $C3 and putting Foo into the macro would use $83.

The [MultiMacros] section contains a list of buttons that can contain multiple macros, one of which fires (in order) each time the button is pressed. It contains entries in the form:

ButtonName=Address1 [, Address2]

where ButtonName is the name of the button that can contain multiple macro entries. If only Address1 is specified, then the byte at that address will contain the number of macros in the high-order nibble, and the number of the next macro to fire in the low-order nibble. (Both values are encoded.) If Address1 and Address2 are both specified, then the first address will contain the number of macros assigned, and the second address will contain the number of the next of the next macro to fire. (Again, both are encoded.) Note that this section must be defined AFTER the [Buttons] section.

The [ButtonMaps] section is in the form:

MapNum=KeycodeList

where KeycodeList is a list of keycodes, some of which can be enclosed in parentheses to indicate that they are mapped to the same bit. Each entry (keycodes surrounded by parentheses are considered a single entry) corresponds to one mapping bit.

The [SpecialProtocols] section contains a list of special protocols and their ProtocolIDs for the given remote. The entries are in the form:

SpecialProtocolName=ProtocolID

where SpecialProtocolName is the name of the special protocol as defined by IR (DSM, UDSM, LDKP, ULDKP, etc.), and ProtocolID is the hexadecimal representation of the ProtocolID for the remote-specific version of that protocol. If IR does not yet support a given Special Protocol, that protocol can still be specified in this section. In that case, the name will be used to label the special protocol, and it will still appear on the Special Protocols tab. IR will not be able to provide any special handling in that case, so the value(s) will have to be entered and displayed as hex. The Special Protocols tab will not be displayed if this section is empty or missing.
